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Motivation: Reduced Basis Method

RB Scenario:

» Parametrized applications relying on time-critical or many repeated simulations
Goals:

» Offline-/Online decomposition

» Efficient reduced simulations

> A posteriori error control
References: [Patera&Rozza, 2006], [Haasdonk et al., 2008]
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Idea of the Reduced Basis Method

Parametrized PDE
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u [0, Tmax] = W C L2(Q), s.t.
u(0) = ug
Oeu(t)— L [u(t)]=0
plus boundary
conditions.
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Example: FV scheme for Burgers-Equation

Burgers Equation

Oru — Vvuf1 =0

e.g. discretized by finite volume method with Engquist—Osher flux.

» Parameter vector p := (u1) € [1,2].
> smooth initial data

> rectangular 120 x 60 grid with K = 100 time steps.

(1)



Questions

1. How can we compute efficient reduced simulations?

2. How can we compute efficient reduced simulations for /\

non—linear problems?

3. How can we generate the reduced basis space?

4. How can we apply the RB method to our favorite prob-
lems?



1. How can we compute efficient reduced simulations?



Reduced basis scheme (Haasdonk et al., 1997)

Reduced simulation (linear with affine parameter dependence)
For p € P find {u,’j(y,)}kK:O C Wh . such that

up (1) == Pp [uo(w)]
(1d = ALy (1) [uf ()] = (14 + DLy e(w) [uf(w)] .



Reduced basis scheme (Haasdonk et al., 1997)

Reduced simulation (linear with affine parameter dependence)
For pu € P find {uk (1)} ;g C Wiea C W, such that

U (1) = P [wo(p)]
(1d = AtLy () [uf ()] = (14 + ALy £ () [ufi(m)] .



Reduced basis scheme (Haasdonk et al., 1997)

Reduced simulation (linear with affine parameter dependence)
For pu € P find {uk (1)} ;_y C Wiea C W, such that

ul (1) = Prear [uo(1)]
(1d = AtLy (1) [uf ()] = (1d + ALy £(w) [ufi(m)] .

Size: NxN Size: Size: NxN
Structure: NIZ(;' = Structure:
Dense X Sparse

Size:
Nx1




Reduced basis scheme (Haasdonk et al., 1997)

Reduced simulation (linear with affine parameter dependence)
For pu € P find {uk (1)} ;_y C Wiea C W, such that

uy(‘)ed(l‘l‘) = Prea? [to(w)]
(Id — AtLy (1)) [“f:dl ﬂ)] = (Id + AtLy £(w)) [ Urea ”)]

Size: NxN Size: Size: NxN
Structure: NIZ(;' = Structure:
Dense X Sparse

Size:
Nx1




Reduced basis scheme (Haasdonk et al., 1997)

Reduced simulation (linear with affine parameter dependence)
For pu € P find {uk (1)} ;_y C Wiea C W, such that

U?ed(lj') = Pred? [UO([,L)]
(Id = AtLyed,12(m)) [“f:dl(”)] = (ld+ AtLica (1) [ufed(“)] ’

Size: NxN Size: Size: NxN
Structure: NIZ(;' = Structure:
Dense X Sparse

Size:
Nx1




Offline-/Online decomposition

Affine parameter dependence
Assume L, j/g can be written as

Qi/E
Lp,1/e(p)[up] = Z ol (W)L | glunl.

Qi/E D Size: HxH
Zq:I Structure: Sparse
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Offline-/Online decomposition

Affine parameter dependence
Assume L, j/g can be written as

Qi/E
Lp,1/e(p)[up] = Z ol (W)L | glunl.

Reduced operators are: Lyeq 1/E() = Pred[Lh,1/E(1)]

Qi/E D Size: HxH
Zq:I Structure: Sparse




Offline-/Online decomposition

Assume RB space spanned by N basis functions ® := {¢;}

Offline matrices

N
i=1"

Reduction of parameter independent components: Pieq {Ez ,/E]

q |
,Pred[ﬁh,//l_:] — q)t
Size: NxN Size: NxH
Structure: Structure:
Dense Dense

q
Lh,l/E
Size: HxH
Structure:

Sparse

[0}
Size: Hxi
Structure

Dense



Offline-/Online decomposition

Q
Lred,1/e(1) = Zq!f o} (1) PredlL] ) /g]

[ ]

iline offline
0 Size: NxN
['red,l/E(/—") = Zq!ls D Structure:

Dense




2. How can we compute efficient reduced simulations for non—linear
problems?

Lp(pe)up ()] (x2)
AN, tanten)

— Llup(p)]
ZyoL£(k)lup(w)]



Reduced basis scheme (DHO, 2012)

Reduced simulation (implicit/explicit with Newton scheme)
For p € P find {ufed(u)}f:o C Wied C W, such that

0 ._ k+1 ._  k+1,vmax(k)
Ured = PrEd [U()([.L)] ’ Ured "= Ured e
with Newton iteration
k+1,0 .k k+1,v+1 _  k+1l,v k+1,v+1
Ured = Ured> Ured = Ured + 5red ’

k+1,0+1 K k+1, k+1,
(Id + AtDLred.l?|uk+1,u) [5,ed Y ] =ufg— Uy — At (L:red.l? [U,ed "] + Lyed,E? [Ufec
red



What to do with the operators?

Problem

No affine parameter decomposition. . .



What to do with the operators?

Problem

No affine parameter decomposition. . .

Answer

Empirical operator interpolation!
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Example: polynomial interpolation

Polynomial interpolation
> X = 1°°([0,1])
» X7 .=, polynomials of degree p.
» TZr e.g. Chebyshev points.



Example: polynomial interpolation

Polynomial interpolation

> X = L([0,1])
» X7 .=, polynomials of degree p.
» TZr e.g. Chebyshev points.

v

works only in 1D

v

polynomials not always best selection



Empirical interpolation[Barrault et al, 2004]

Empirical interpolation

> X:={f(p)ip € P} C LX)
> XIm = span{q,,,},",ﬁ’:1 “empirically’” determined.

» TIm “empirically” determined.



Empirical interpolation[Barrault et al, 2004]

Empirical interpolation

> X:={f(p)ip € P} C LX)
> XIm = span{q,,,}ﬂz1 “empirically’” determined.

» TIm “empirically” determined.

For selection of interpolation nodes and functions: » El-greedy



Empirical interpolation[Barrault et al, 2004]

Empirical interpolation for parametrized functions f(u) : R — R.

flxa:pe)
Y \ flxim)
5.0 Base functions:
\ — f(xip)
4o Iyof(x;p) y
1.0 = a1
30 0.5 f 5
: + X
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1.0 o5 g u S
: + X
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Empirical operator interpolation[DHO11]

Empirical interpolation for parametrized discrete operators L, € Wy,

L 2
PR tuntumiee)

5.0 Base functions:
— Llup(p)]
4o IyoL(m)up()l v
: 1.0 = g1
0.5 { 5
3.0 | M
0.5 1.0
2.0 v
: 1.0 = g2
0.5 { H 5
1.0
-+ X
0.5 1.0
X
0.2 8.4406 0.8 10
Xo X
o . . " M . . M
» “magic points” {xm},,_1 » basis functions {gm},,—1

Discrete operators need to have “H-independent Dof dependence”.



Empirical operator interpolation: Subgrids

Restrict up () to subgrid Evaluate £y (1) [up ()] (Xm)

Efficient evaluations
The operator evaluations in interpolation points Lp, (1)[-](xm) can be computed
efficiently during online phase, if

> the operator has a localized structure (small stencil) and
> the local geometry information is precomputed during offline phase.



Empirical interpolation: Fréchet derivative

Define Im(p) : Whp — R, up — Lp()[up](Xm)

Observation

(D (Zn [L£4(10)]) luy [VA]) (xm) = Dlen(12) ], [v8]

still efficiently computable with complexity O(M).



Offline- /Online Decomposition

Compute matrices Ly g, J; € RV*M depending on treq and dreq:

(Lije) pm = Yot I & (1) [thea] Jo am@n

) = SV DI E ()] [0rea] fry Gmpn

line offtiffine



3. How can we generate the reduced basis space?

A )

— )
st



Basis Generation methods

Reduce an “intelligent” selection of snapshots by
> Proper orthogonal decomposition,
> Greedy algorithms or
> a combination of both.
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Basis Generation methods

Reduce an “intelligent” selection of snapshots by
> Proper orthogonal decomposition,
> Greedy algorithms or
> a combination of both.

Plus: Selection of “magic points” for empirical operator interpolation.

Challenge: Control of error and basis sizes.



A posteriori error estimator (DHO 2012)

Aim
[Jui (1) — uleg ()| < 1)

Two main contributions:
» Projection error on W,eq (exactly computable!)
» Empirical interpolation error (M + M’ trick)



A posteriori error estimator

Theorem (A posteriori error estimator )
Assumptions:
» Operators fulfill “Lipschitz” properties:
> o= v+ ALy [u] = AL Wy, > i 0= Vi,
> |lu—v—AtLe [u] + AtLE [V]HW,, < Ce,ae|lu— V”WI.

> M'-trick: Empirical interpolations exact for larger CRB space Wy, pyr and
Ph [Uo(y,)] € Wred



A posteriori error estimator

Theorem (A posteriori error estimator cont.)
Assumptions:
» Operators fulfill “Lipschitz” properties:
> llu = v ALy ] - AL Wy, > i o = Vi,
> Jlu—v— Atlelu] + AtLe [y, < Ceaello = viy,

> M'-trick: Empirical interpolations exact for larger CRB space Wy, pyr and
Ph [Uo(y,)] € Wred

Then:
() = Y- At e (|[RIE )| + R
i=0

b () = vk ()| < (k)

with



A posteriori error estimator

Theorem (A posteriori error estimator )
Then: ’

) = 3 Chai i ch S, (|[RE2 )| + | RE 2] ))

() = vl ()| < il (10)

with

The residuals R, \y measure the empirical interpolation error, e.g.

M+M’
k+1,v * k+1,v
R*,M T Z I"" [ured i|£m
m=M



A posteriori error estimator

Theorem (A posteriori error estimator cont.)
The residuals R* are efficiently computable:

At? HRk+1H2 _ <AtRkH,AtRk+1>
— <ak+1 ak)T M ( k+1 ak)T
oo wreot) e o0 o)

)’
+ae (2] e [o1]) " (2] e o).



Example: |. Burgers Equation
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Example: |. Burgers Equation

Burgers Equation

Oru — Vvuf1 =0

with (implicit) finite volume discretization with Engquist Osher flux.

» Parameter vector p := (u1) € [0,2].
> smooth initial data.

> rectangular 120 x 60 grid with K = 100 time steps.

)



Example I: Solution snapshots
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Example I: Empirical interpolation of Lj

(@) Lebesgue constant

T T T T (b) El-greedy

150

400

s 100 300

200
50

100

| | | |

100 200 300 400

M

Illustration of interpolation DOF selection for Burgers problem. DOFs corresponding
to darker points are selected first.




Example I: Table

» dim(W;,) 9600
> Umax A~ 1—20

> #Mirain 28

N M g-runtime[s] max. error  g-offline time[h]

7,200 0  90.01 0.00 0
42 83 4.42 1.15.1073 0.96
83 166  6.23 6.03-107° 1.34
125 250  8.99 7.43.107° 1.74
166 333 11.6 8.33-107 2.23
208 416 15.64 2471077 2.78
249 499 19.56 2.38-10~7 3.4

N M g-runtime[s] max. error  g-offline time[h]
0 -1 90.01 0.00 0

2 72 4.44 1.73-1073 0.54

83 144  6.04 5.74-10° 1.09

125 216  8.37 7.30-10° 1.55

167 288 11.92 7.63-107 2.08

208 360 15.08 2.31-107 2.69

233 402 16.48 1.55.10~7 3.27




Example I: Error landscape

T T T T
102 - \‘ |
x 5 \
s \\\ l —4
S \\\\\\ \\‘ 10 \\\
Pl Nl ~
1076 - = 7
| |

|
1,1 75,120 150,227 233,350
1,1 75,148 150,265 233,402
(N, M)




Example II: Nonlinear Diffusion

Nonlinear Diffusion
Problem definition:

Oty — mAuP =0 in Q x [0,1], u(-,0)=co+up on Qx {0}



Example II: Nonlinear Diffusion

Nonlinear Diffusion
Problem definition:

Oty — mAuP =0 in Q x [0,1], u(-,0)=co+up on Qx {0}

» Parametrization p = (p, m, co) € [1,5] x [0,0.01] x [0,0.2]
» Q = [0,1]? with homogeneous boundary conditions

> rectangular 100x100 grid with K = 80 time steps.



Example I1: Solution snapshots

Initial data:

0.8
0.6
0.4

0.2

o
0 0.20.40.60.8 1

Co+0.5
Co+0.4
Co+0.3
Co+0.2
Co+0.1

Co

Sample trajectories:

=

ﬁ

b) t 0.4 t=10 e) AVA \J =1
0.7, {
oJ,I

C) NI I N f) Il ~ m’%
0.2

ap [ WA

|
/1

a) p =(1,0.01,0.2), b) p = (1,0.01,0.0),
¢) = (2,0.01,0.2), d) p = (2,0.01,0.0),
e) = (4,0.01,0.2), f) p = (4,0.01,0.0)



Example II: Greedy error convergence

(a) PODEI-greedy basis discards (b) X-greedy error decrease

10 T T 10° T -
——— POD-GREEDY
— —_ - — — PODEI-GREEDY
3 3
= =
3 g
= =
IS =
£ 1072 — =
e IS
s s
w v
3 3
3 3
E £
1074 = |
o 100 200

extension step number

RB size N



Example II: Greedy error convergence

(a) Estimates for POD-Greedy(m”)

10°

=
2
<=
S5
=
o
|
A4
<
K

~

E o4 =

0 20 40 60 80 100

Basis size: N

K
Lk T’N,M,M’

—o,..

maxy

(b) Estimates for PODEI-Greedy(m’)

10°
M =1
1072
104
o 50 100
Basis size: N



Example Il: Numerical results

v

dim(W;) 10000
Venax &1 — 20
#Mrain,0 27.
# Mirain 305

N M g-runtime[s] max. error  g-offline time[h]
0 0 5538 0.00 0

17 71 1.57 3.56-1073 1.35

33 142 1.95 8.33-10~* 1.67

50 213  2.51 2.08-10% 2.07

66 283  3.19 5.88.107° 2.43

83 354  4.07 5.55- 107> 2.88

99 425 53 4.06-10~° 33

N M g-runtime[s] max. error  g-offline time[h]
0 -1 5538 0.00 0

19 72 1.61 3.01-1073 0.16

37 143 2.07 7.90-10—4 0.45

56 215  2.67 1.66-10—* 1.01

74 286 3.6 6.36 - 10—° 1.69

93 358  4.83 3.54.1075 2.72

111 429  6.55 1.96-10—5 4.02




Example II: A posteriori error estimator

Efficiency of error estimator n: A(pn) := m
h(1)—Ueq

efficiency A
efficiency A

by ’ DS

1 10 20 40

Error bar plot showing mean and standard deviation of error estimator efficiency over a
sample of 100 random parameters for different values of M’. The dots indicate the
minimum (e) and maximum (o) efficiency.



Other numerical experiments

» Richards Equation with simple geometry transformation

» Two—phase flow in porous media (without parametrization and very
simple)



Numerical results

» Problems are implemented with our software package RBmatlab
(http://www.morepas.org/software).

» Computations are executed on compute nodes of the PALMA cluster
at the university of Miinster with Intel Xeon Westmere X5650, 2,67
GHz processors and 24 GB RAM per node.



Goals specification

» Abstract reduced basis framework
» Re-use of (existing) implementations of PDE discretizations
» Short implementation time for the reduced simulations



Abstract Software concept

High dimensional computations

Abstraction

[ Linear problems ] (Non-linearproblems} [ ]

PDE Discretizations (FEM, FV, DG):
Navier-Stokes, Groundwater-Flow, Convection-Diffusion
Poisson, Maxwell, ...




Low—dimensional computations (_)

v

Control of offline algorithms

> POD-greedy, El-greedy, PODEI-greedy, ...

> Gathering and post—processing of reduced matrices
Low—dimensional computations

> Reduced simulations
> A posteriori error estimation

v

v

Low—dimensional data visualization
(Implemented in Matlab)

v



High—dimensional computations (C—2UNERB J)

v

Storage / manipulation of reduced spaces

Efficient high dimensional linear algebra algorithms
> POD, orthonormalization, Gram—Matrix computations

v

Parametrization
(Implemented in C++)

> based on DUNE core modules (http://dune-project.org)

v

v



The glue

> Commélr!)catlon between Dune-RB and RBmatlab can be
realize

1. compiling Dune-RB example as (mex-) library for matlab, or
2. TCP/IP communication between two stand—alone applications.

L [

g¥-INNd r.l




Proof of concept (linear diffusion)

RBMATLAB >[matlab ‘ [~ DUNE-RB > ./dunerbServer: <]
VaspGridPa\—t_Bl_rF—t—'—l_'—t—ﬂ%rame erBlock: Parameter Toverlap™ not specified, defa

<MATLAB(R) > ulting to '0'.
Copyright 1984-2008 The Mathworks, Inc. Eerver: waiting for connections...
Version 7.6.0.324 (R2068a) ]

February 16, 2008

To get started, type one of these: helpwin, helpdesk, or demo
’ For product information, visit www.mathworks.com

starting up rbmatlab in directory:
/home/martin/projects/rbm-results/rbmatlab

Using the following directory for large temporary data:

/tmp

Using the following directory for data files storing results:
/home/martin/projects/rbm-results/results

Using the following directory as RBMATLABHOME
/home/martin/projects,/rom- results/rbmatlab

skiﬁped clearing filecache for function-calls!

»>

[
"



Proof of concept (linear diffusion)

<MATLAB (R) >
Copyright 1984-2008 The MathWorks, Inc.
Version 7.6.0,324 (R2008a)
February 16, 2008

To get started, type one of these: helpwin, helpdesk, or demo
For product information, visit www.mathworks.com.

starting up rbmatlab in directo
/home/martin/projects/rbm- results/rbmatlab

Using the following directory for large temporary data:

/tmp

Using the following directory for data files storing results:
/home/martin/projects/rbm-results/results

Using the following directory as RBMATLABHOME:
/home/martin/projects/rbm-results/rbmatlab

skipped clearing filecache for function-calls!

>>

>> [a,b,c] =
mexclient('echo’, [1, 21, ....
struct(* uelu'. 21, ...
{[1,2], (3,41 });

client: connect: Connection refused
Warning: connection to ::1 failed

client connected to 127.0.0.1
copying argument no. 0
copying argument no. 1
copying argument no. 2

>>

DUNE-RB > ./dunerbServer

YaspGridParameterBlock: Parameter 'overlap'

ulting to '0'.

server: waiting for connections...
server: got connection from 127.6.6.1

Received call for processing 'echo'

with 4 arguments and

3 return values.

not specified, defa

Fopying argument no.
fopying argument no.
copying argument no.

N o




Proof of concept (linear diffusion)

/home/martin/projects/rbm-results/rbmatlab

skipped clearing filecache for function-calls!

>

>> [a,b,c] = ...

mexclient('echo’, [1, 2], ....
struct('field', [1,2]), ...
111,21, [3,4] });

client: connect: Connection refused

Warning: connection to ::1 failed

client connected to 127.0.6.1
copying argument no. €
copying argument no. 1
copying argument no. 2

DUNE-RB > ./dunerbServer

YaspGridParameterBlock: Parameter 'overlap' not specified, defa
ulting to '@'.

server: waiting for connections...

server: got connection from 127.6.6.1

Received call for processing 'echo’
with 4 arguments and 3 return values.

copying argument no. ©
copying argument no. 1
5opying argument no. 2

DA



Proof of concept (linear diffusion)

<MATLAB (R) > [»I DUNE-RB > ./dunerbserver <]
Copyright 1984-2008 The MathWorks, Inc. YaspGridParameterBlock: Parameter 'overlap’ not specified, defa
Version 7.6.0.324 (R2008a) ulting to '0'.
February 1, 2008 server: waiting for connections...

server: got connection from 127.6.6.1

To get started, type one of these: helpwin, helpdesk, or demo Received call for processing 'init model'
with 1 arguments and 1 return values.

For product information, visit www.mathworks.com.

starting up rbmatlab in directory: read discfunclist xdr from headerfile, size = 20
/home/martin/projects/rbm- results/rbmatlab Using the explicit ode solver! In order to use a different disc
Using the following directory for large temporary data: retization, change the 'DISCRETIZATION' make variable

/tmp

Using the following directory for data files storing results: Received call for processing 'get_mu'
/home/martin/projects/rbm-results/results with 1 arguments and 1 return values.

Using the following directory as RBMATLABHOME:
/home/martin/projects/rbm-results/rbmatlab
skipped clearing filecache for function-calls!
> Received call for processing 'rb_symbolic_coefficients®
with 1 arguments and 1 return values.

>> % load model parameters

>> model = convdiff dune model; 1
Warning: Name 1s nonexistent or not a directory: mexclient.
> In path at 110

In addpath at 87

In convdiff_dune_model at 95
client: connect: Connection refused
Warning: connection to ::1 failed

client connected to 127.6.6.1
>>




Proof of concept (linear diffusion)

> In path at 110

In addpath at 87

In convdiff_dune_model at 95
client: connect: Connection refused
Warning: connection to ::1 failed

client connected to 127.0.6.1

>>
‘» model.rb problem type

ans =

‘Unievnl

‘» model.RB_generation_mode

ans =

‘greedy_unifn m_fixed

‘» model.RB_stop _Nmax

DUNE-RB > ./dunerbServer

YaspGridParameterBlock: Parameter 'overlap' not specified, defa
ulting to '@'.

server: waiting for connections...

server: got connection from 127.6.6.1

Received call for processing 'init model'
with 1 arguments and 1 return values.

read discfunclist xdr from headerfile, size = 20
Using the explicit ode solver! In order to use a different disc
retization, change the 'DISCRETIZATION' make variable

Received call for processing 'get_mu'
with 1 arguments and 1 return values.

Received call for processing 'rb_symbolic_coefficients'
with 1 arguments and 1 return values.

ans =

‘20

[>> model.T

% this is read from DUNE-RB <<<<<<|

ans =

[ 1

> 1

|




Proof of concept (linear diffusion)

ans =
lin_evol

>> model.RB_generation_mode
ans =

greedy_uniform_fixed

>> model.RB_stop_Nmax

ans =
20

>> model.T % this is read from DUNE-RB <<<<<<

ans =
1

>>

>>

>>

DUNE-RB > ./dunerbServer

YaspGridParameterBlock: Parameter 'overlap' not specified, defa
ulting to '@'.

server: waiting for connections...

server: got connection from 127.6.6.1

Received call for processing 'init model'
with 1 arguments and 1 return values.

read discfunclist xdr from headerfile, size = 20
Using the explicit ode solver! In order to use a different disc
retization, change the 'DISCRETIZATION' make variable

Received call for processing 'get_mu'
with 1 arguments and 1 return values.

Received call for processing 'rb_symbolic_coefficients'
with 1 arguments and 1 return values.

Received call for processing 'gen model data'
with 1 arguments and 1 return values.

>> % generate high dimensional model specific data, like e.g
>> % the grid

>>
>> model data = gen model data(model);
>

> 1

|

0




Proof of concept (linear diffusion)

>> % Just for fun: Do a DETAILED simulation in DUNE-RB >>>>>> |

>> Received call for processing 'rb_symbolic_coefficients®
>> % first set the parameter mu with 1 arguments and 1 return values.

>> model = set mu(model, [0.6 0.5 1.6]);

>>

>> % then run the simulation

>> tic; sim data = detailed simulation(model, model data); toc| |Received call for processing 'gen model data'
Elapsed time is 11.795319 seconds. with 1 arguments and 1 return values.

>>

>

>> Received call for processing ‘set mu’

>> with 2 arguments and 0 return values.

>

>

>

>> Received call for processing ‘detailed_simulation’
>> with 1 arguments and 1 return values.

>

>

>> opening file: ./grape//solution.series

>>

>> Received call for processing 'set mu’

>> with 2 arguments and @ return values.

>>

>

>

> Received call for processing 'detailed simulation’
>> with 1 arguments and 1 return values.

>>

>

> ~ opening file: ./grape//solution.series

=1 ]




Proof of concept (linear diffusion)

>> % Just for fun: Do a DETAILED simulation in DUNE-RB >>>>>>
>>

>> % first set the parameter mu

>> model = set mu(model, [0.0 6.5 1.0]);

>>

>> % then run the simulation

>> tic; sim data = detailed simulation(model, model data); toc
Elapsed time is 11.795319 seconds.
>

Received call for processing 'rb_symbolic_coefficients®
with 1 arguments and 1 return values.

Received call for processing 'gen_model data'
with 1 arguments and 1 return values.

>>
>>
>>
>>
>>
>
>>
>>
>»

= 11.8 seconds!

>>
>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

=1 1




Proof of concept (linear diffusion)

>> % Generate the reduced basis with the POD-Greedy algorithm |-/ =
>> % in DUNE-RB >>>>>>>>

>> Received call for prccessmg
>> detailed data = gen detailed data(medel, model data); with 2 arguments and 1 return values.

Starting RB extension loop

Detected maximum error prediction ©.644006 for mu=[0.601

1 0.5 Received call for processing 'get mu’
Extended RB to length 2 o nts and 1 return values.
Detected maximum error prediction ©.615456 for mu=[0 1
Extended RB to length 3

1 for processing 'set mu'
Detected maximum error prediction ©.812877 for mu=[0 uments and @ return values.
1 0.5
Extended RB to length 4
Detected maximum error prediction ©.81064 for mu=[6 ved call for processing
.5 rguments and 1 return values.
Extended RB to length 5
Detected maximum error prediction ©.0084873 for mu=[8.001 ./grape//solution.series
Extended RB to length 6 for processing 'set_mu’
nts and @ return values.
Detected maximum error prediction .8073233 for mu=[0 1 1]
Extended RB to length 7
Detected maximum error prediction ©.6055443 for mu=[6 1 1] Received call for processing ‘rb init values'
Extended RB to length 8 with 2 arguments and 1 return values.
Detected maximum error prediction ©.6048443 for mu=[0 3
1 0.5] :l 0




Proof of concept (linear diffusion)

>> 3
>
>> detailed data.RB_info Received call for processing 'is valid rb'
ans = " RE-generation error convergence
10
M_train: [3x64 double]
max_err_sequence: [1x20 double]
mu_sequence: [3x2e double]
mu_ind_seq: [1x20 double]
toc_value sequence: [1x20 double]
M _first errs: [64x1 double]
stopped on epsilon: @
stopped_on_max_val_train_ratio: @
stopped_on_timeout: ©
stopped on_Nmax: 1 3|
stopped_on_empty_extension: © i 1
stopped_on_Nlimit_estimation: @
M last errs: [64x1 double]
elapsed_time: 3.0000e-06
>>
>>
>
>>
>
> 0’
>> o 2 4 & 8 10 12 14 18 18 20
>>
>>
>
> opening file: ./grape//solution.series
=1 ]




Proof of concept (linear diffusion)

>> % NOW: Generate reduced matrices for online computations
>» % and get them to RBMATLAB <<<<<<s<<

>> reduced data = gen reduced data(model, detailed data)

Received call for processing 'rb_init_values'
with 2 arguments and 1 return values.

reduced_data =

a0: {[1x20 double]}
© {2x1 cell}
: {5x1 cell}
: {4x1 cell}
: {4x1 cell}
: {16x1 cell}
{25x1 cell}
{8x1 cell}
{20x1 cell}
: {16x1 cell}
120

>>
>>
>
>>
>>
>>

>
>>
>>
>>
==
>>

> 1

|

Received call for processing 'rb_operators®
with 2 arguments and 1 return values.

Received call for processing 'set mu'
with 2 arguments and © return values.

Received call for processing 'reconstruct_and_compare’
with 2 arguments and © return values.

opening file: ./grape//solution.series

Received call for processing 'rb init values'
with 2 arguments and 1 return values.

Received call for processing ‘rb operators*
with 2 arguments and 1 return values.




Proof of concept (linear diffusion)

V|
|

>> sizes=cellfun(@(X) size(X), reduced data.LL E, ...
‘UniformOutput’, false);

>> sizes{:}

o o o o
3 5 5 3
a @ E @
|| " " "

o
S
?
"

¥
v

-1

Received call for processing 'rb_init_values'
with 2 arguments and 1 return values.

Received call for processing 'rb_operators®
with 2 arguments and 1 return values.

Received call for processing 'set mu'
with 2 arguments and © return values.

Received call for processing 'reconstruct_and_compare’
with 2 arguments and © return values.

opening file: ./grape//solution.series

Received call for processing 'rb init values'
with 2 arguments and 1 return values.

Received call for processing 'rb operators®
with 2 arguments and 1 return values.




Proof of concept (linear diffusion)

>> % Now fast reduced simulations are possible in RBMATLAB
>> % without any communication to DUNE-RB

>
>> model = model.set mu(model, [© 6.5 1], true);

>

>> tic; rb sim data=rb simulation(model, reduced data); toc
Elapsed time is 0.020223 seconds.

>
>> rb_sim _data

0.02 seconds!

rb_sin data =

a: [20x113 double]
Delta: [1x113 double]
LL I: [20x2@ double]
LL_E: [26x20 double]

>>
>>

Recwjved call for processing 'rb_init_values'
with % arguments and 1 return values.

or processing ‘rb_operators*

Received cal
i and 1 return values.

with 2 argumen

Received call for procd{ging 'set_mu'
with 2 arguments and © réurn values.

Received call for processing ' nstruct_and_compare’
with 2 arguments and © returp/valudg.

>> % Error estimator at end time:
>
>> rb_sim data.Delta(end)

ans =

0.0019

>>
>>
>
>>

=1

opening file: ./grape/ lution.series

Received call for
with 2 arguments

cessing 'rb_init values
d 1 return values.

Received
with 2

1L for processing 'rb_operators’
guments and 1 return values.

o]



Proof of concept (linear diffusion)

>> % Of course, the solution can be reconstructed in

>> % DUNE-RB >>>>>>>>>

>

>> tic;...

dummy=rb_reconstruction(model, detailed_data, rb_sim_data); toc
Elapsed time is ©.359108 seconds.

Received call for processing 'reconstruct_and_compare’
with 2 arguments and @ return values.

opening file: ./grape//solution.series
>>
>> Received call for processing 'rb init values'
>
>
>>
>>
>
>
>>
>>
>>
>
>>
>
>
>
>>
>>
>
>
>>
>>
>
>
>>

=1




So, we have a hammer for linear problems. . .
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...and also one for nonlinear problems.
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But how do we make our problems look like nails?
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Interface to (linear) PDE discretizations

>> % Generate the reduced basis with the POD-Greedy algorithm
>> % in DUNE-RB >>>>>>>>

>
>> detailed data = gen detailed data(model, model data);

Starting

Detected
1

Extended

Detected
Extended

Detected
éxtended
Detected
Extended
Dete:ted
Extended

Detected
Extended

Detected
Extended

Detected
1

RB extension loop

maximum error prediction
0.5

RB to length 2

maximum error prediction
RB to length 3

maximum error prediction
.5

RB to length 4

maximum error prediction

0.5

RB to length 5

maximum error prediction

1
RB to length 6

maximum error prediction
RB to length 7

maximum error prediction
RB to length 8

maximum error prediction
6.5

0.044006 for mu=[0.001

0.015456 for mu=[@ 1 1]

0.012877 for mu=(0

©0.01064 for mu=[@

©.0084073 for mu=[0.001

0.0073233 for mu=(@ 1 1]

0.0055443 for mu=[6 1 1]

0.0048443 for mu=[0

<

Received call for prccessing
with 2 arguments and 1 return values.

Received call for processing 'get mu’
with 1 arguments and 1 return values.

Received call for processing
with 2 arguments and © returr €

Received call for processing 'rh extensmn PCA'

with 3 arguments and 1 returt

opening file: ./grape//solution.series

Received call for processing 'set mu’
with 2 arguments and @ return values.

Received call for processing 'rb init values'
with 2 arguments and 1 return values.




Interface to (linear) PDE discretizations

Return affinely decomposed operator parts:
> components: £] and

> coefficients: o9(u)



Interface to (non—linear) PDE discretizations

Common dependencies for local operator evaluations

Ly, ()[1(xm)

at quadrature points information of the grid

Basis function evaluations (Local) geometry |:|



Interface to (non—linear) PDE discretizations

Common dependencies for local operator evaluations

Lp,()[1(xm)

DA



Dune-RB grid wrapper

» During detailed simulation
> Delegate calls directly to the grid

» During offline phase

> Store all grid and function space information on the subgrid in low—dimensional data
structures

» During online phase
> Delegate calls low—dimensional data structures generated in offline phase.



More information

http://morepas.org/software



Outlook

Conclusion
> Model order reduction of general (scalar) parametrized evolution schemes
» with reduced basis methods and empirical interpolation for discrete operators

» Rigorous error control via a posteriori error estimator is possible.



Outlook

Conclusion
> Model order reduction of general (scalar) parametrized evolution schemes
» with reduced basis methods and empirical interpolation for discrete operators

» Rigorous error control via a posteriori error estimator is possible.

Future work
> Dealing with steep gradients in solution snapshots (non-linear reduced bases?)
» Variable time step width
> 2-Phase flow system

> Improve software



